[0098] The results show that all composition AE, BE, CE, DE, BDE and ABCDE improve the gel strength compared to the Reference composition.

Example 3

Effect of Lactic Acid Bacterial Strains on the Gel Strength of a Yogurt with Different Protein Contents

[0099] Yogurt was made according to recipe B, C and D as defined in Table 3 and according to the method described in the Materials and Methods.

TABLE 6

Composition	Recipe	Protein (%)	Time to reach pH 4.6 (min)	Gel Strength (Pa)	Shear Stress (Pa)	Brookfield (Pa * s)
ABCDE	В	2.9	370	39	20	7.4
ABCDE	С	5.1	450	179	40	22.7
ABCDE	D	3.5	466	74	23	8.6
BDE	D	3.5	450	111	38	13.8
Reference	D	3.5	495	71	19.6	6.4

[0100] The results in table 6 clearly show that increasing the protein content of a yogurt (2.9-3.5-5.1%), increases the gel strength (39-74-179 Pa respectively), the shear stress (20-23-40 Pa respectively) as well as the Brookfield of the yogurt (7.4-8.6-22.7 Pa*s respectively).

[0101] The results in table 6 also show that ABCDE and BDE are increasing the gel strength, the shear stress as well as the Brookfield of the yogurt when compared with the Reference composition.

[0102] The results in in table 6 furthermore show that composition BDE, compared to ABCDE, even further increases the gel strength, the shear stress as well as the Brookfield of the yogurt with a protein content of 3.5% (recipe D).

[0103] In particular, composition BDE increases the gel strength of the yogurt with 3.5% protein made with ABCDE (74 Pa) to the gel strength of a yogurt with ~4.5% protein (made with ABCDE), This can be deduced by interpolation of the data obtained with ABCDE as the 3 protein levels (not shown). Similarly, composition BDE increases the shear stress of the yogurt with 3.5% protein made with ABCDE (23 Pa) to the shear stress of a yogurt with ~5.0% protein (made with ABCDE). Finally, composition BDE increases the Brookfield of the yogurt with 3.5% protein made with ABCDE (8.6 Pa*s) to the Brookfield of a yogurt with ~5.0% protein.

Example 4

Effect of Lactic Acid Bacterial Strains on the Time to Reach pH 4.6, Shear Stress and Viscosity of a Yogurt with Different Protein Contents, in Comparison with Commercially Available Strains

[0104] Yogurt was made according to recipe E, F and G as defined in Table 3 and according to the method described in the Materials and Methods. Additionally starter culture TA40 and YO-MIXTM 883 were used to inoculate the recipe E, F and G. TA40 and YO-MIXTM 883 are both commercially available from Danisco A/S and comprise *Streptococ*-

cus thermophilus and Lactobacillus delbrueckii strains. Both cultures are known for providing thickness, as is exemplified for TA40 for example in FIG. 1 of US2009/0226567.

TABLE 7

Composition	Recipe	Protein (%)	Time to reach pH 4.6 (min)	Shear Stress (Pa)	Brookfield (Pa * s)
BD	Е	3.4	318	59	8.2
BDE	E	3.4	356	56	7.1
TA40	E	3.4	467	44	5.4
YO-MIX TM 883	E	3.4	n.a.	44	5.6
BD	F	3.8	339	62	10.3
BDE	F	3.8	368	58	8.3
TA40	F	3.8	443	50	6.8
YO-MIX TM 883	F	3.8	861	52	6.4
BD	G	4.2	366	68	12.1
BDE	G	4.2	412	66	10.9
TA40	G	4.2	523	58	8.6
YO-MIX TM 883	G	4.2	838	58	8.7

[0105] The results in Table 7 clearly show that BD and BDE increase the shear stress as well as the Brookfield of the yogurt when compared with the TA40 and YO-MIXTM 883. Furthermore, Table 7 clearly shows that the time to reach pH 4.6 is lower for BD and BDE at all protein levels.

[0106] Similarly FIG. 1 shows the shear stress at 215 s-1 (PA) for compositions BD, BDE, TA40 and YO-MIXTM 883 for recipes E, F and G. FIG. 1 clearly shows a higher shear stress for compositions BD and BDE in comparison with TA40 and YO-MIXTM 883 for all three recipes E, F and G. Thus, BD and BDE increase the shear stress even in recipes with reduced amounts of protein, i.e. from 4.2 to 3.8 and 3.4% protein.

[0107] Moreover, BD is able to provide a shear stress/Brookfield in yogurt recipe E having 3.4% protein of 59 Pa, while TA40 and YO-MIXTM 883 provide a comparable shear stress of 58 in yogurt recipe G having 4.2% protein. Thus, by using BD the protein can be reduced with 0.8% of the yogurt while maintaining the shear stress. In other words, BD provides a reduction in protein level of 19%.

[0108] FIGS. 2 to 4 show the shear stress versus shear rate for compositions BD, BDE, TA40 and YO-MIXTM 883 for recipe E, F and G having 3.4, 3.8 and 4.2% protein, respectively. FIGS. 2 to 4 shows that the higher shear stress of composition BD and BDE when compared with TA40 and YO-MIXTM 883 is consistent over the shear rate of 10 to 300 s⁻¹, which is the relevant range for determination of shear stress in yogurts.

Example 5

Effect of Lactic Acid Bacterial Strains on Serum Viscosity of a Yogurt with Different Protein Contents, in Comparison with Commercially Available Strains

[0109] Similar to example 4, yogurt was prepared with recipes E, F and G with lactic acid bacteria BD, BDE, TA40 and YO-MIXTM 883. Table 8 below shows the results of the measured serum viscosity